首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25741篇
  免费   1969篇
  国内免费   1354篇
电工技术   1528篇
综合类   1764篇
化学工业   3026篇
金属工艺   2075篇
机械仪表   2165篇
建筑科学   1197篇
矿业工程   1308篇
能源动力   1089篇
轻工业   1155篇
水利工程   614篇
石油天然气   731篇
武器工业   231篇
无线电   3615篇
一般工业技术   5065篇
冶金工业   578篇
原子能技术   311篇
自动化技术   2612篇
  2024年   46篇
  2023年   336篇
  2022年   609篇
  2021年   679篇
  2020年   718篇
  2019年   625篇
  2018年   629篇
  2017年   825篇
  2016年   949篇
  2015年   960篇
  2014年   1536篇
  2013年   1534篇
  2012年   1672篇
  2011年   2204篇
  2010年   1524篇
  2009年   1576篇
  2008年   1364篇
  2007年   1590篇
  2006年   1459篇
  2005年   1158篇
  2004年   1005篇
  2003年   869篇
  2002年   776篇
  2001年   572篇
  2000年   538篇
  1999年   552篇
  1998年   423篇
  1997年   430篇
  1996年   415篇
  1995年   277篇
  1994年   270篇
  1993年   171篇
  1992年   160篇
  1991年   140篇
  1990年   122篇
  1989年   107篇
  1988年   72篇
  1987年   18篇
  1986年   29篇
  1985年   16篇
  1984年   18篇
  1983年   21篇
  1982年   22篇
  1981年   5篇
  1980年   10篇
  1978年   4篇
  1977年   4篇
  1976年   4篇
  1975年   7篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(19):27386-27394
In order to control the pore characteristics and macroscopical performance of porous ceramics, roles of the freeze casting parameters are the key points. Herein, aligned dendritic porous SiC was fabricated by freeze casting of PCS-camphene solutions with different solid loading, freeze front velocity, temperature gradient, and freezing temperature. Influence of these parameters on the microstructure and compressive strength of porous SiC was investigated. With increasing the PCS content, freeze temperature, freeze front velocity or temperature gradient, degree of undercooling of the camphene was increased, resulting in the formation of smaller pore size, decreased porosity and increased compressive strength. Compared to variables of freeze temperature and temperature gradient, increased freeze front velocity was more efficiency in improving the compressive strength of porous SiC, owing to the formation of smaller pore size and longer secondary dendritic crystals. Promising micron-sized porous SiC with high porosity (79.93 vol%) and satisfactory strength (15.84 MPa) was achieved for 10% PCS-camphene solution under optimized freezing conditions.  相似文献   
2.
Herein, we report the photosensing property of CdS thin films. CdS thin films were coated onto glass substrates via a spray pyrolysis method using different spray pressures. Prepared films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical and photoluminescence spectroscopy. XRD analysis demonstrated the growth of crystalline CdS films with crystallite sizes varying from 26 to 29 nm depending on the pressure. The SEM and EDAX analyses revealed nearly-stoichiometric CdS films with smooth surfaces and slight variation in grain morphology due to pressure changes. Optical measurements showed a direct bandgap varying from 2.37 eV to 2.42 eV due to pressure changes. A photodetector was also fabricated using the grown CdS films; the fabricated photodetector exhibited good performance depending on the spray pressure. A spray pressure of 1.5 GPa resulted in high photoresponsivity and external quantum efficiency.  相似文献   
3.
《Ceramics International》2021,47(19):27351-27360
A series of xPbO–(45-x)CuO–55B2O3 glasses (5 ≤ x ≥ 40 mol %) were prepared by the melt-quenching technique. The X-ray diffraction (XRD) patterns of the prepared glasses are found to have amorphous structure. An extensive ultrasonic study has been made to explore the structural role of PbO and CuO in the borate network. Various elastic properties were calculated from the measured data of density and ultrasonic velocity. Ultrasonic velocity and elastic moduli revealed broad humps at about 20 mol % PbO, which are attributed to the borate anomaly. Below 20 mol % PbO, all Pb2+ ions are considered to be entering the borate network as a glass modifier. This results in the transforms the borate network from an open structure to a denser three-dimensional structure due to BO3 → BO4 conversion. Beyond 20 mol, addition of PbO results in the formation of metaborate, pyroborate, and orthoborate units with NBOs. This weakness the glass structure and decrease both ultrasonic velocity and elastic moduli. The elastic properties were predicted and quantitatively analyzed by taking into account the effect of boron coordination number on the compositional and structural parameters involved in Makishima–Mackenzie's theory, ring deformation model and bond compression model. An excellent agreement between the computed theoretical and experimental elastic moduli, micro-harness and Poisson's ratio was achieved for majority of samples.  相似文献   
4.
In this study, we report highly transparent Y2O3 ceramics fabricated by hot-pressing only at 1500 °C without a HIP treatment, featuring in-line transmittance levels of 77% and 84% at a wavelength of 400 and 1100 nm, respectively with the grain size suppressed to 710 nm. The effect of the ball size during the grinding of Y2O3 powders on the correlation between the thus-prepared Y2O3 powders and the optical properties of the hot-pressed samples is demonstrated for the first time. With a decrease in the diameter of the ZrO2 balls from 5 mm to 1 mm, the milling efficiency was enhanced and admirable transparency of Y2O3 was attained at a short milling time. However, several micron-sized pores remained in the transparent specimens prepared with 1 mm balls, originating from the inhomogeneously packed region of the green body. Finally, the 2 mm was found to be optimum for obtaining a fine-grained and pore-free microstructure with the best in-line transmittance of Y2O3 ceramics.  相似文献   
5.
《工程爆破》2022,(2):74-75
针对雅安小关子水电站地下厂房吊车梁岩壁的特点 ,提出了对岩壁保护层的双层光面爆破方案及主要的爆破参数。爆破效果表明 ,所确定的控制爆破方案及设计参数是正确的 ,为类似的控制爆破工程提供了有益的经验  相似文献   
6.
《Ceramics International》2022,48(3):3051-3058
Contactless optical thermometers have attracted extensive attentions for applications in scientific research and technological fields due to their apparent advantages. Herein, a novel sequence of Ba3-xSrxLu4O9 (B3-xSxLO):Er3+/Yb3+ phosphors were successfully prepared to investigate the temperature sensing property. By establishing energy transfer from Yb3+ to Er3+ and regulating the local lattice environment, up-conversion luminescence of Er3+ is dramatically improved when excited by 980 nm laser. This can effectively promote signal-noise ratio and reduce the errors in temperature detection. Furthermore, a multi-mode optical thermometry, which includes the fluorescence intensity ratio (FIR) from two thermally coupled levels of 2H11/2/4S3/2, FIR based on non-thermally coupled system of 2H11/2/4F9/2 and fluorescence lifetime of 4S3/2 state of Er3+, was explored systematically. The fabricated samples exhibit the superior temperature measurement performances containing wide temperature-sensing range, superior signal discriminability, high sensitivity and favorable repeatability, indicative of the enormous utilization prospects of B3-xSxLO:Er3+/Yb3+ for thermometry.  相似文献   
7.
《Ceramics International》2022,48(3):3368-3373
Over the recent past, lead-based halide perovskite materials have drawn significant attention due to their excellent optical and electrical properties for solar cells and optoelectronics applications. However, the toxicity of lead elements and instability under ambient conditions leads to develop alternative compositions. Herein, we report a novel mechanochemical synthesis of tin iodide-based double perovskites (A2SnI6; A = Rb+, Cs+, methylammonium, and formamidinium), and their structural, optical, and electrical properties are investigated. Importantly, we found that the hydrogen iodide (HI) addition during the ball-milling process minimizes secondary phase formation in the synthesized A2SnI6 powders. The effects of HI addition and the A-site substitution are investigated with respect to the lattice parameters, optical bandgaps, and electrical properties of the synthesized perovskite materials. Our results demonstrate essential information to improve the understanding of halide perovskite materials and develop efficient lead-free perovskite photoelectric devices.  相似文献   
8.
介绍了在复杂环境下爆破拆除一地下特大钢筋混凝土支撑的技术难点。由于合理选取爆破参数,采取孔内高段、孔外低段毫秒微差起爆网路,安全防护采取覆盖、近体、保护性三种措施,有效地阻止了飞石对周围建筑物的损害,并对爆破可能产生的危害进行了科学验算,最后分多次爆破圆满完成拆除任务。  相似文献   
9.
The rapid increase in energy consumption has severely rehabilitated human life urging to develop reliable and environmental friendly energy storage devices. Target oriented, systematic approach has been adopted to synthesis La doped CeO2 nanostructures with percentage as LaxCe1-xO2 (X = 0,1,3,5,7) for potential super capacitors applications. Morphological doping impact on H2 production, electrochemical and optical properties are thoroughly investigated. XRD studies revealed the crystalline phase purity and attained approximately 35 nm average crystallite size. The SEM images exposed that primary morphology nano-particles has been tuned into nanorods by increasing the La concentration in CeO2 with size range 40~60 nm. CV graphs depicted that the prepared electrodes obey the pseudo capacitive faradaic reactions behavior in nature. Maximum capacitance (925 F g-1) has been achieved by La0·05Ce0·95O2 which is better than numerous reported materials. The La0·05Ce0·95O2 also exhibited excellent GCD stability with 87.8% retention exhibiting it suitability for supercapacitor applications. Furthermore, the La0·05Ce0·95O2 showed the significantly higher H2 (9 μmol h?1g?1) production rate as compared to undoped CeO2 and La0·01Ce0·99O2, La0·03Ce0·97O2 samples. This higher production is attributed to the recombination rate and have strong substantial correlation with optical characteristics.  相似文献   
10.
Photocatalytic water splitting has become a promising technology to solve environmental pollution and energy shortage. Exploring stable and efficient photocatalysts are highly desired. Herein, we propose novel low-dimensional InSbS3 semiconductors with good stability based on density functional theory. Such InSbS3 structures could be obtained from their bulk crystal by suitable exfoliation methods. Our calculations indicate that two-dimensional (2D) and one-dimensional (1D) InSbS3 nanostructures have moderate band gaps (2.54 and 1.97 eV, respectively) and suitable band edge alignments, which represents sufficient redox capacity for photocatalytic water splitting. 2D InSbS3 monolayer possesses oxygen evolution reaction (OER) activity and 1D InSbS3 single-nanochain possesses hydrogen evolution reaction (HER) activity under acidic conditions. Interestingly, two edge electron states can be introduced when the dimension of InSbS3 is reduced from 2D to 1D and the new electron states can exist in arbitrary-width nanoribbons, which can effectively promote the process of HER. Moreover, InSbS3 monolayer and single-nanochain also exhibit large solar-to-hydrogen efficiency, high carrier mobility, and excellent optical absorption properties, which can facilitate the process of photocatalytic reactions. Our findings can stimulate the synthesis and applications of low-dimensional InSbS3 semiconductors for overall water splitting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号